

VACARIA, Noviembre 14 de 2023

PRODUCIR MANZANAS EN CHILE FRENTE A UN CLIMA ADVERSO

Álvaro Sepúlveda León Laboratorio de Ecofisiología Frutal asepulveda@utalca.cl

QUEIMA DAS MAÇÃS PELO SOL E O ESTRESSE AMBIENTAL NAS MACIEIRAS

OBJETIVO

Documentar a situação atual e o manejo da queima pelo sol das maçãs e dos desafios e impacto do clima na macieira.

SALVE ESSA DATA

DATA: 14 DE NOVEMBRO

HORÁRIO:13:30h às 17:00h

Local: AUDITORIO UCS - VACARIA -RS

Organização: Centro de Pesquisa Proterra e empresa WISER

PROGRAMA

- 13:30 às 13:40h. Recepção dos participantes
- 13:40 às 14:00h. Informações sobre objetivos e programa da reunião.

Dra. Rosa Maria V Sanhueza e Engº. Agrº. Marciano Bittencourt

- 14:00 às 14:30h. Resultados obtidos sobre a queima pelo sol e do efeito de protetores solares em Vacaria. Dr. Vinicius Adão Bartnicki e Dra. Rosa Maria V. Sanhueza
- 14:30 às 15:00h: O impacto do golpe de sol na comercialização de maçãs no Brasil. Marcelo Vieira - Fischer maçãs.

- 15:30 às 16:30h. Situação Atual e medidas de controle utilizadas para prevenir os Danos de Golpe de Sol adotados no Chile. (Caracterização dos danos -Tolerância do mercado);
- b) Estresse ambiental e danos na macieira;
- c) impacto de clima nas cultura e perspectivas futuras; Informações agroclimáticas para fruticultores pela Universidade de Talca).

Dr. Álvaro Sepulveda. Centro de Pomáceas Universidade de Talca - Chile.

- -16:30 às 17:00: Discussão geral
- -17:00. Encerramento

- 15:00 às 15:30h. - INTERVALO

TALCA

250 km al sur de Santiago de Chile35°30' S>200.000 habitantesCapital de Región del Maule

UNIVERSIDAD DE TALCA

Estatal, fundada en 1981. Fusión de las sedes regionales de la U. de Chile y de la U. Técnica del Estado

2009

7.000 estudiantes21 carreras de pregrado23 programas de magíster4 programas de doctorado

2023

11.500 estudiantes
39 carreras de pregrado
5 carreras técnicas
23 programas de magíster
12 programas de doctorado

FACULTAD DE CIENCIAS AGRARIAS

- Agronomía (1987)
- Magister en Horticultura
- Magíster en Agronegocios Internacionales
- Magíster en Riego y Agricultura de Precisión
- Doctorado en Ciencias Agrarias

Chile:

19,5 millones de habitantes 756 mil km²

17°30′ S: Desierto de Atacama

56°32′ S: Cabo de Hornos

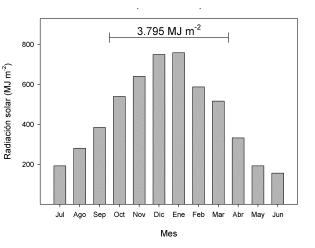
Brasil:

>200 millones de habitantes

>8.500 mil km²

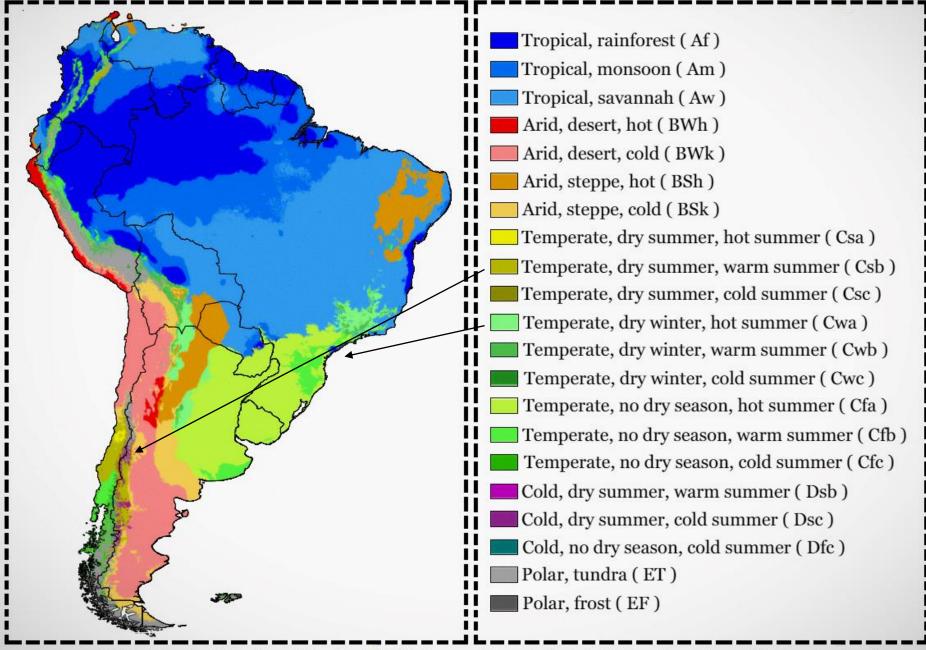
Rio Grande do Sul:

11 millones de habitantes

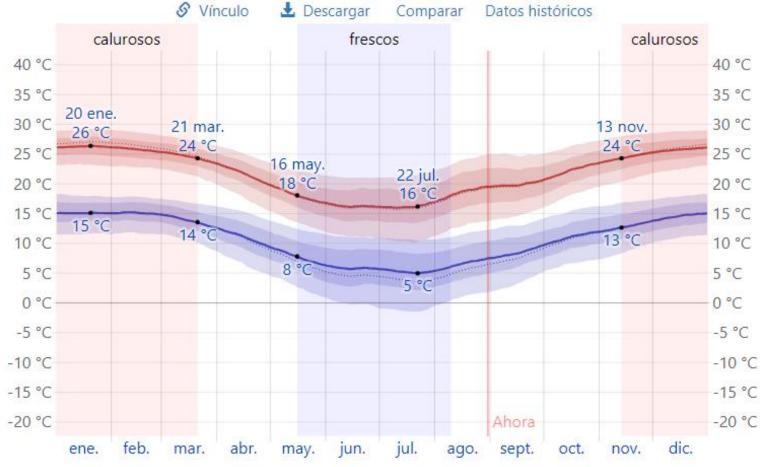

282 mil km²

27° - 33° S

Araucaria araucana



Radiación solar verano: 900 – 1.000 W/m² PAR: 2.000 – 2.400 µmoles/m²s Verano cálido y seco Lluvia en invierno Lluvia aumenta hacia el sur


Talca: 650 mm/año

Köppen-Geiger climate classification map for South America

Source: Beck et al.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Scientific data 5:180214, doi:10.1038/sdata.2018.214 (2018)

Temperatura máxima y mínima promedio en Vacaria

La temperatura máxima (línea roja) y la temperatura mínima (línea azul) promedio diaria con las bandas de los percentiles 25° a 75°, y 10° a 90°. Las líneas delgadas punteadas son las temperaturas promedio percibidas correspondientes.

Promedio	ene.	feb.	mar.	abr.	may.	jun.	jul.	ago.	sept.	oct.	nov.	dic.
Máxima	26 °C	26 °C	24 °C	22 °C	18 °C	16 °C	16 °C	19 °C	20 °C	22 °C	24 °C	26 °C
Temp.	20 °C	20 °C	19 °C	16 °C	12 °C	10 °C	10 °C	12 °C	13 °C	16 °C	18 °C	20 °C
Mínima	15 °C	15 °C	14 °C	11 °C	8°C	6 °C	<u>5 °C</u>	7 °C	9°C	11 °C	13 °C	15 °C

Vucuit

Vacaria, Estado de Río Grande del Sur, Brasil

Año completo Hoy

Primavera Verano Otoño Invierno

ene. feb. mar. abr. may. jun. jul. ago. sept. oct. nov. dic.

Resumen

Temperatura

Nubes

Precipitación

Sol

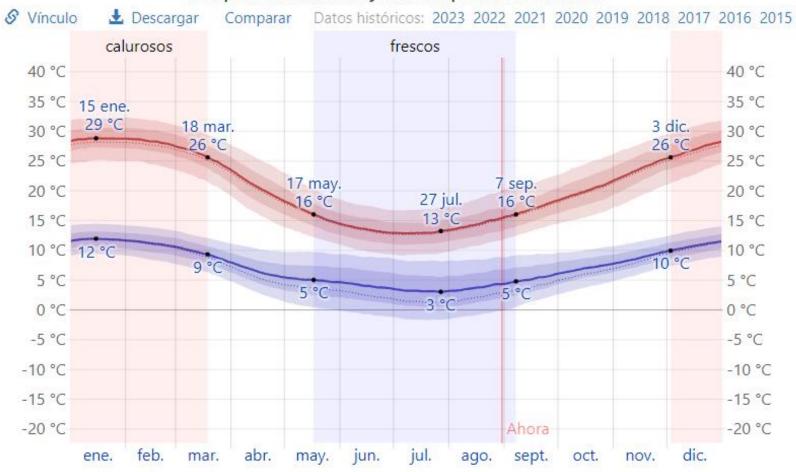
Luna

Humedad

Viento

La mejor época para visitar

Periodo de cultivo


Energía solar

Topografía

Fuentes de los datos

Ocultar anuncios

Temperatura máxima y mínima promedio en Talca

La temperatura máxima (línea roja) y la temperatura mínima (línea azul) promedio diaria con las bandas de los percentiles 25° a 75°, y 10° a 90°. Las líneas delgadas punteadas son las temperaturas promedio percibidas correspondientes.

Promedio	ene.	feb.	mar.	abr.	may.	jun.	jul.	ago.	sept.	oct.	nov.	dic.
Máxima	29 °C	28 °C	26 °C	21 °C	16 °C	14 °C	13 °C	14 °C	17 °C	20 °C	24 °C	27 °C
Temp.	20 °C	20 °C	17 °C	13 °C	10 °C	8°C	8°C	9°C	11 °C	13 °C	16 °C	19 °C
Mínima	12 °C	11 °C	9°C	6°C	5°C	4 °C	3 °C	4 °C	5°C	7 °C	9°C	11 °C

raica

Provincia de Talca, Región del Maule, Chile

Año completo Hoy

Primavera Verano Otoño Invierno

ene. feb. mar. abr. may. jun. jul. ago. sept. oct. nov. dic.

Resumen

Temperatura

Nubes

Precipitación

Sol

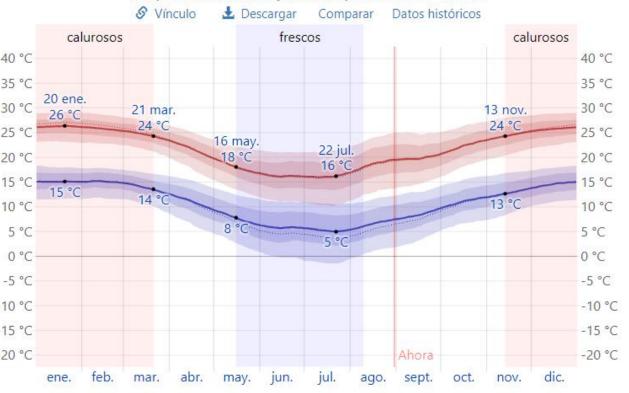
Luna

Humedad

Viento

Temperatura del agua

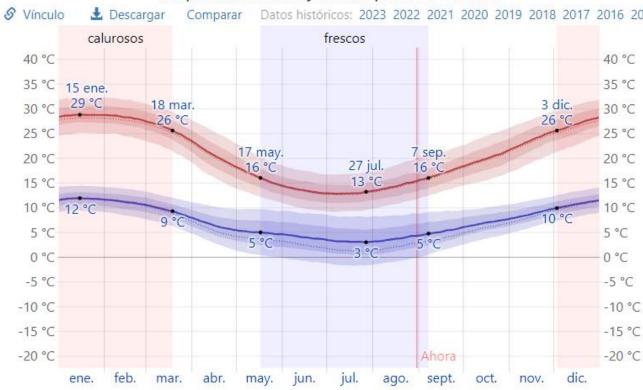
La mejor época para visitar


Periodo de cultivo

Energía solar

Topografía

Fuentes de los datos

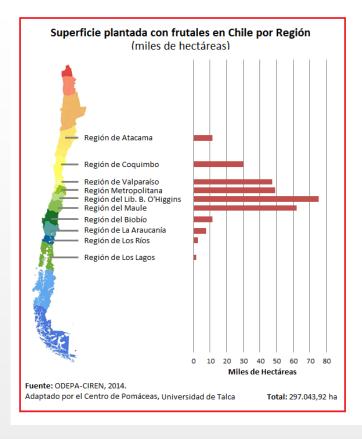

Temperatura máxima y mínima promedio en Vacaria

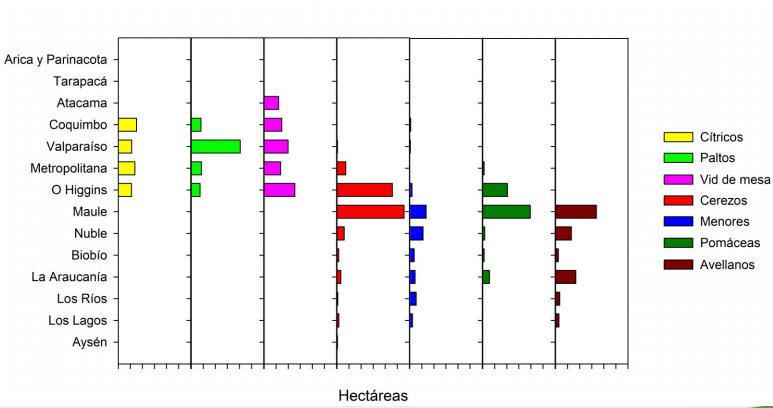
La temperatura máxima (línea roja) y la temperatura mínima (línea azul) promedio diaria con las bandas de los percentiles 25° a 75°, y 10° a 90°. Las líneas delgadas punteadas son las temperaturas promedio percibidas correspondientes.

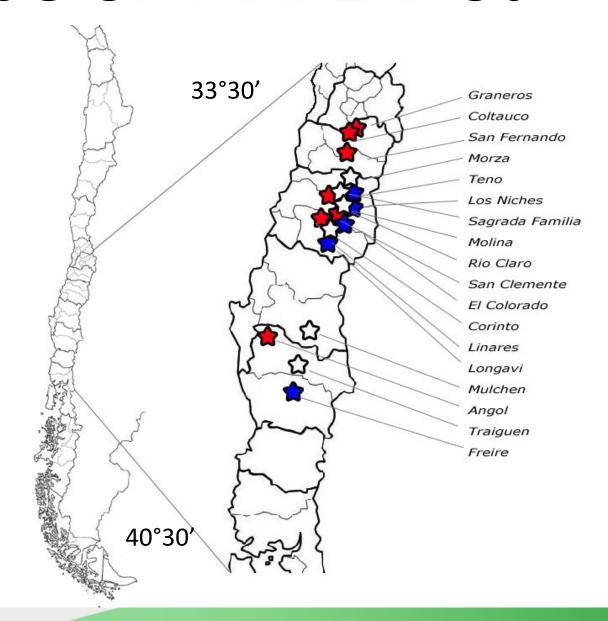
Promedio	ene.	feb.	mar.	abr.	may.	jun.	jul.	ago.	sept.	oct.	nov.	dic.
Máxima	26 °C	26 °C	24 °C	22 °C	18 °C	16 °C	16 °C	19 °C	20 °C	22 °C	24 °C	26 °C
Temp.	20 °C	20 °C	19 °C	16 °C	12 °C	10 °C	10 °C	12 °C	13 °C	16 °C	18 °C	20 °C
Mínima	15 °C	15 °C	14 °C	11 °C	8°C	6°C	5 °C	7°C	9°C	11 °C	13 °C	15 °C

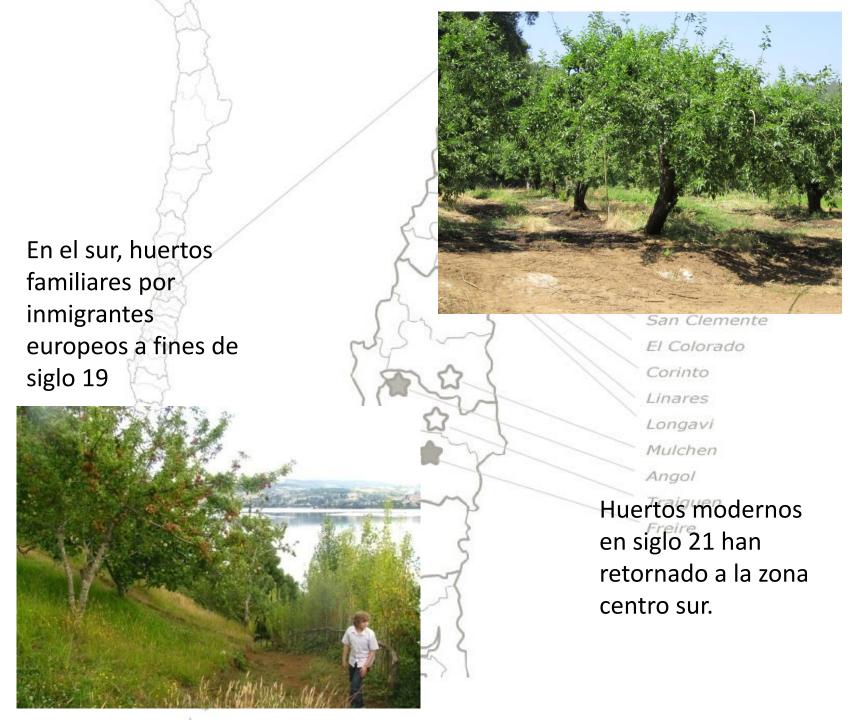
Temperatura máxima y mínima promedio en Talca

La temperatura máxima (línea roja) y la temperatura mínima (línea azul) promedio diaria con las bandas de los percentiles 25° a 75°, y 10° a 90°. Las líneas delgadas punteadas son las temperaturas promedio percibidas correspondientes.

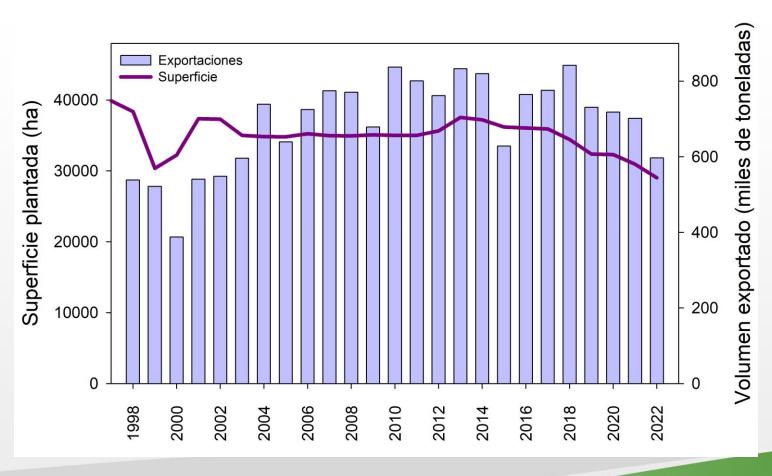

Promedio	ene.	feb.	mar.	abr.	may.	jun.	jul.	ago.	sept.	oct.	nov.	dic.
Máxima	29 °C	28 °C	26 °C	21 °C	16 °C	14 °C	13 °C	14 °C	17 °C	20 °C	24 °C	27 °C
Temp.	20 °C	20 °C	17 °C	13 °C	10 °C	8°C	8°C	9°C	11 °C	13 °C	16 °C	19 °C
Mínima	12 °C	11 °C	9°C	6°C	5°C	4 °C	3 °C	4 °C	5 °C	7 °C	9°C	11 °C


Climas de Chile Climates of Chile




FRUTALES EN CHILE

DISTRIBUCIÓN MANZANOS



Plantaciones para exportación a mediados siglo 20, en la zona central del país

EVOLUCIÓN MANZANOS EN CHILE

Odepa, 2023.

VOLÚMENES EXPORTADOS POR CHILE

VARIEDAD	2018	2019	2020	2021	2022
Galas	363.039.207	311.327.758	313.240.190	293.014.471	281.419.225
G. Smith	87.508.858	82.286.750	81.776.719	81.864.813	80.480.904
Rojas	110.199.994	83.356.990	65.165.653	60.744.991	57.644.728
Fuji	76.673.789	64.838.039	61.083.516	50.333.917	49.944.422
Cripps Pink	113.838.704	106.779.671	101.074.061	124.385.446	99.323.771
Total general	777.883.281	672.489.423	648.416.963	639.176.724	602.056.931

Odepa, 2023.

CULTIVARES GALAS

CULTIVAR	SUPERFICIE (ha)
Royal Gala	5,571
Gala Premium	1,843
Galaxy	1,356
Gala	418
Imperial Gala	376
Pacific Gala	294
Ultra Red Gala	245
Gala Selección	52
Gala Gale	43
Mondial Gala	16
Gala Top One	2
TOTAL GALA STD	10,216
Brookfield	3,464
Buckeye Gala	272
TOTAL GALAS	13,952

iQonsulting, 2017.

CULTIVARES FUJIS

CULTIVAR	SUPERFICIE (ha)
Fuji	1,445
Sun Fuji	36
Fuji Premium	35
Green Fuji	22
Fuji Yakata	21
Red Fuji	11
Fuji Tac 114	5
TOTAL FUJI STD	1,575
Fuji Raku Raku	3,518
Fubrax	149
Aztec	2
TOTAL FUJIS	5,244

PRODUCCIÓN MANZANAS CHILE

PRODUCCIÓN MANZANAS 2012

Exportación: 752 mil toneladas (48%)

Mercado interno: 125 mil t (8%)

Procesado agroindustria: 680 mil t (44%)

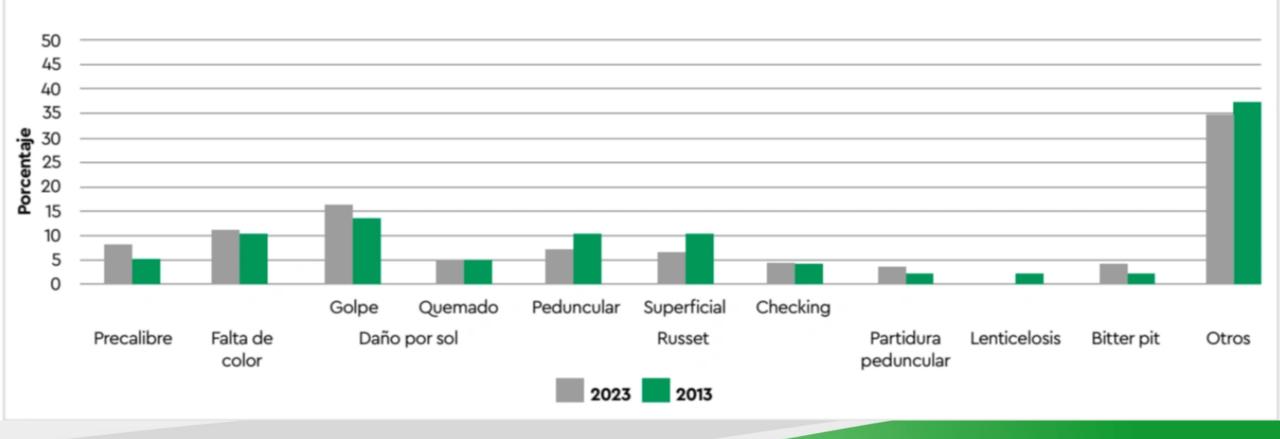
DESCARTE EXPORTACIÓN EN PACKING: 24-35%

Impacto (33-36%) 9% del total

Daño sol (18-25%) 6%

Desórdenes fisiológicos* (5-17%) 3%

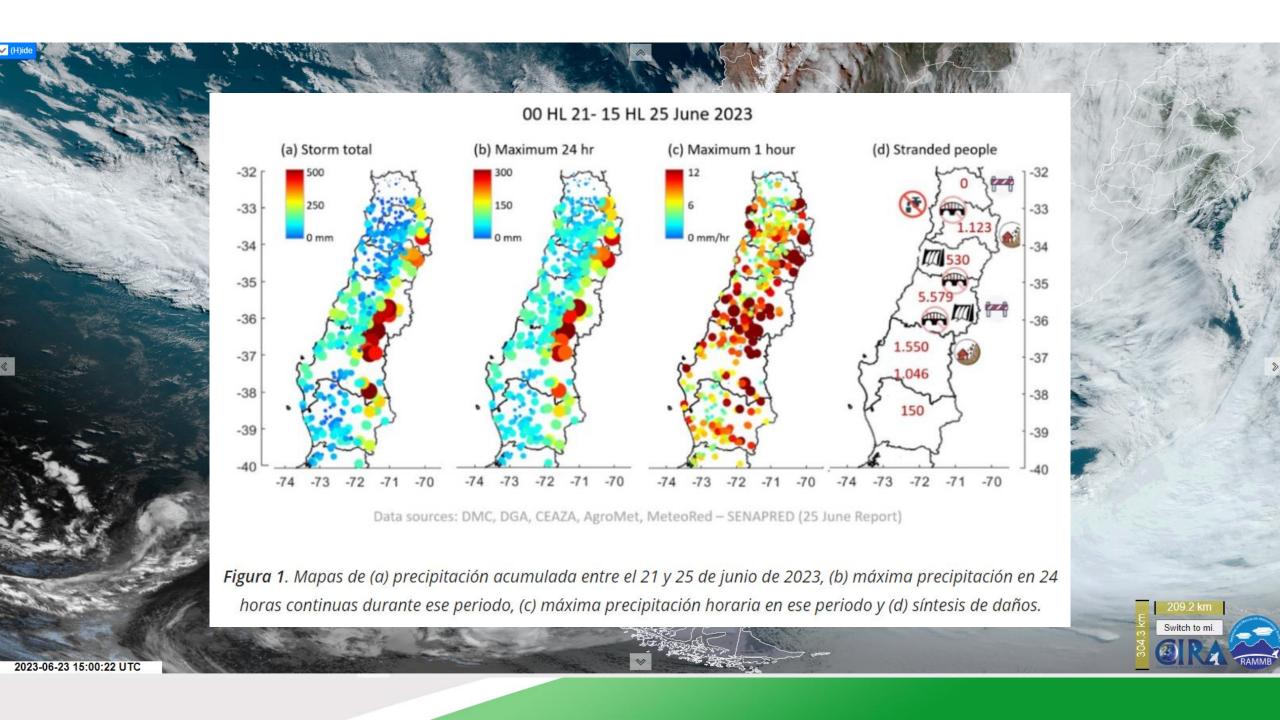
Russet (4%) 1,2%


Falta color (2%) 0,6%

(González, 2013; Villarroel, 2000; Frías, 2006).

^{*}aparece durante o después del almacenaje.

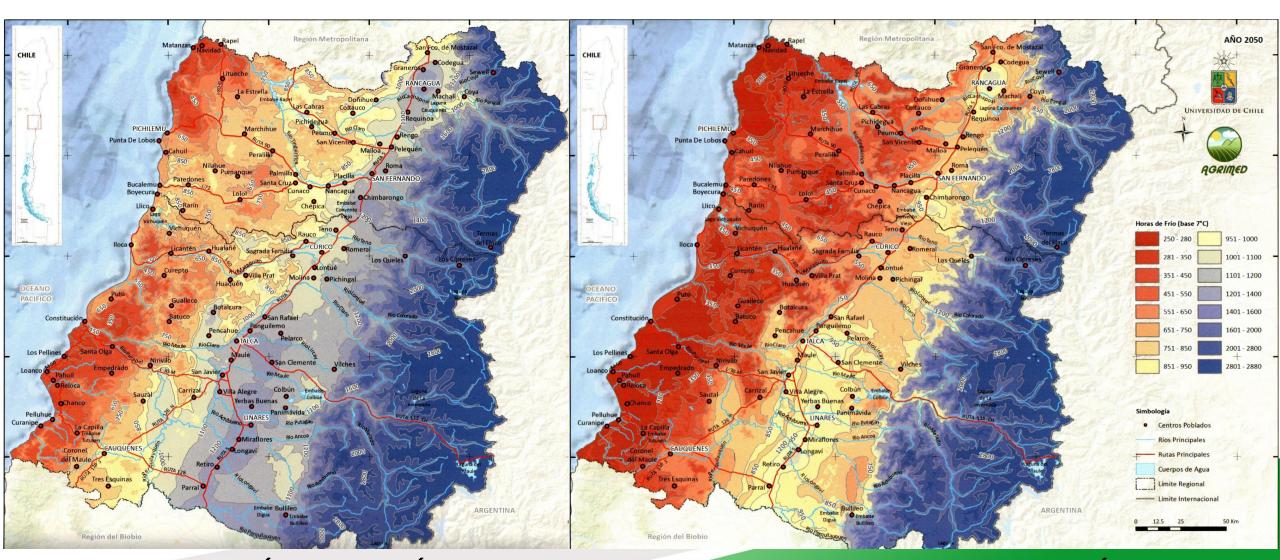
Figura 9: Incidencia de daños y defectos observados a la recepción de packing en manzanas Galas en las temporadas 2013 y 2023 (Elaboración propia, con datos de la industria) 50 45 40 15 10 Golpe Peduncular Superficial Checking Quemado Precalibre Falta de Daño por sol Russet **Partidura** Lenticelosis Bitter pit Otros color peduncular

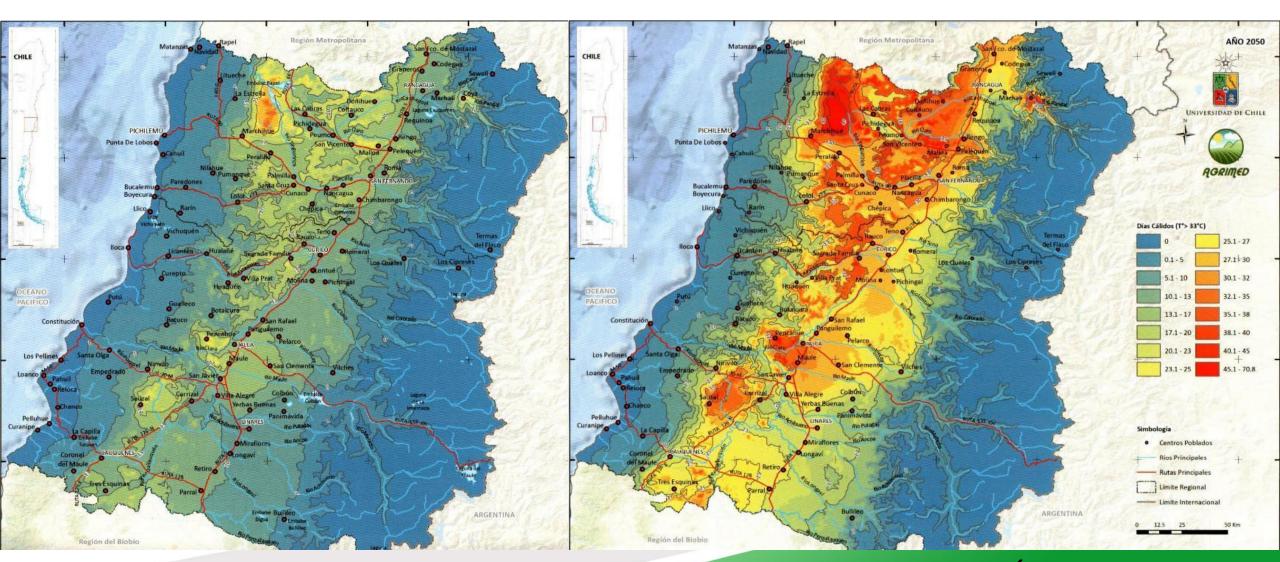

Figura 11: Incidencia de daños y defectos observados a la recepción de packing en manzanas Fuji en las temporadas 2013 y 2023. (Elaboración propia, con datos de la industria)

Manriquez y Barros, 2023. Revista Frutícola Vol. 45 N°2.

EVENTOS CLIMÁTICOS ADVERSOS

- >Inviernos cálidos: 2006, 2012, 2015, 2023
- >Heladas: 2013, 2016, 2019, 2022
- >Granizadas: 2018, 2021, 2023
- >Lluvias fuera de estación: 2014, 2023
- >Mega sequía: 2006-2023
- >Olas de calor: 2016/17, 2019/20, 2021/22, 2022/23, 2023/24?





Control de partidura con secado y techos de cubiertas impermeables.

DISMINUCIÓN DEL FRÍO INVERNAL EN EL NUEVO ESCENARIO CLIMÁTICO

Adaptado de Santibañez et al., 2017.

ALTAS TEMPERATURAS EN EL NUEVO ESCENARIO CLIMÁTICO

Adaptado de Santibañez et al., 2017.

CAMBIOS POR EFECTO DEL CALENTAMIENTO GLOBAL PARA FRUTALES DE CLIMA TEMPLADO

- > Disminución de precipitaciones
- > Menos frío disponible en invierno
- > Incremento estrés fototérmico e hídrico
- > Eventos extremos

LOCAL

- > Cambios en la fenología
- > Reducción fotosíntesis
- > Uso de asimilados en sistemas defensivos
- > Mayor demanda por agua (reducción de eficiencia del uso del agua)
- > Competencia brote-fruto
- > Pérdida de calidad (color, calibre, defectos)
- > Pérdida de condición (vida postcosecha)

GLOBAL

> Cambios en la distribución geográfica de los cultivos

"Sus resultados están de vuelta. Es el cambio climático. ¿Cuántos gases de efecto invernadero ha estado consumiendo?"

ADAPTACIÓN AL IMPACTO CLIMÁTICO CAMBIOS TRANSFORMACIONALES (LARGO PLAZO)

- > Explotación frutícola en zonas alternativas
 - > Antecedentes meteorológicos
 - > Conlleva otros desafíos (control heladas, granizos u otros)
- > Cambio a cultivares adaptados a nuevas condiciones
 - > Menor requerimiento por frío invernal
 - > Menor demanda de agua (menor disponibilidad)
 - > Ciclo corto, menor sensibilidad a alteraciones
 - > Alto en compuestos foto-protectores (pigmentos, antioxidantes, fenólicos)

ADAPTACIÓN AL IMPACTO CLIMÁTICO CAMBIOS INCREMENTALES (CORTO PLAZO)

> Monitoreo y registro más precisos

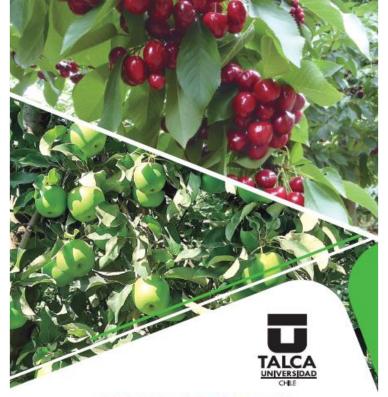
- > Registro meteorológico y fenológico
- > Herramientas tecnológicas digitales

> Manejo del micro-clima

- > Uso de cubiertas (techumbre y suelo)
- Sistemas de protección activa (control de heladas; enfriamiento evaporativo)

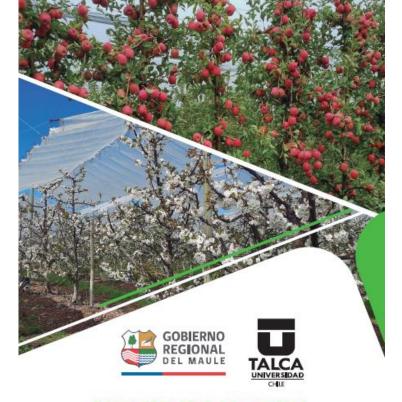

> Aplicación de productos

- > Nueva generación de rompedores de dormancia
- > Polinización asistida
- > Bloqueadores solares
- > Bioestimulantes



MODELOS PREDICTIVOS BASADOS EN CLIMA, NUTRICIÓN Y MANEJO PARA MINIMIZAR PÉRDIDAS POR PARDEAMIENTO EN CEREZAS Y MANZANAS

2022 - 2025



AGRÍCOLA MAQUIHUANO I FRUTÍCOLA EL AROMO AGRÍCOLA INÉS ESCOBAR I CORPORACIÓN POMANOVA

http://pomaceas.utalca.cl

INTELIGENCIA ARTIFICIAL APLICADA AL MONITOREO DE NUEVOS **CEREZOS Y MANZANOS** 2023 - 2025

A.N.A. Chile | Frutícola El Aromo

Iniciativa Financiada con Recurso del Fondo de Innovación para la Competitividad FIC del Gobierno Regional del Maule.

http://pomaceas.utalca.cl

IKAROS: Monitoreo Climático en Pomáceas

El servicio de monitoreo climático en pomáceas, consiste en una plataforma en línea, de consulta, sobre variables climáticas y su incidencia en la calidad y condición de la fruta. Permite a través de modelos, entregar estimaciones de los efectos climáticos de cada temporada, sobre parámetros productivos, como crecimiento del fruto, fecha estimada de cosecha, incidencia de desórdenes fisiológicos, además cuenta con una sección de gestión nutricional. Esta plataforma fue desarrollada, en el marco del proyecto FIA "Sistema de alerta en línea para mejorar la condición y calidad de manzanas, en base a factores ambientales, nutricionales y productivos en el huerto, frente a la variabilidad climática".

DATOS GENERALES (ACCESO PÚBLICO)

PLATAFORMA (ACCESO USUARIOS)

Email

asepulveda@utalca.cl

Contraseña

Accede

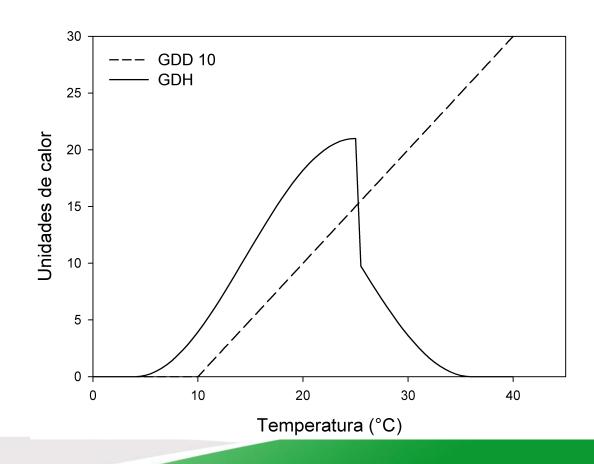
¿No tienes una cuenta? ¡Regístrate aquí! ¿Olvidaste tu contraseña? ¡Recupérala aquí!

PROYECTO FIA CÓDIGO: PYT 2015-0213

ACUMULACIÓN TÉRMICA

Int J Biometeorol (2013) 57:409-421

$$GDD = \begin{cases} 0; T_i \le T_b \\ (T_i - T_b); T_i > T_b \end{cases} \tag{1}$$


Where T_i is the mean daily temperature for day i and T_b the base temperature

$$GDH = \begin{cases} F\left(\frac{T_u - T_b}{2}\right) \left(1 + \cos\left(\pi + \pi \frac{T_i - T_b}{T_u - T_b}\right)\right), T_u \ge T_i \ge T_b \\ F(T_u - T_b) \left(1 + \cos\left(\frac{\pi}{2} + \frac{\pi}{2} \frac{(T_i - T_u)}{(T_c - T_u)}\right)\right), T_c \ge T_i > T_u \\ 0, T_b T_i \ge T_u \end{cases}$$

$$(2)$$

Where F is the stress factor, T_i is the hourly temperature for hour i, T_b the base temperature, T_u is the optimum temperature and T_c is the critical temperature. F was set to 1 as commonly practiced as no known stress was placed on the trees and T_c and T_u were respectively set to 25 and 36 °C as defined by the original authors (Anderson et al. 1986).

Darbyshire et al., 2013.

Procesamiento de información agroclimática específica para manzanos en plataforma IKAROS.

CRECIMIENTO DEL FRUTO

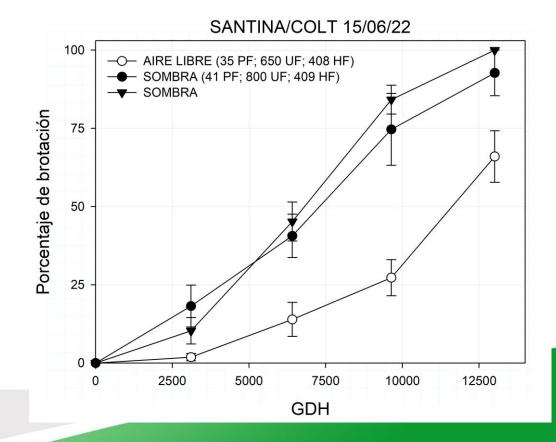
- Calibre potencial
- Maduración
- Potencial almacenaje
- Russet

Análisis mineralógico

60 ddpf

Cosecha

- Daño por el sol
- Color
- Bitter pit
- Lenticelosis


DORMANCIA INTERACCIÓN FRÍO Y CALOR

FLORACIÓN

POLINIZACIÓN

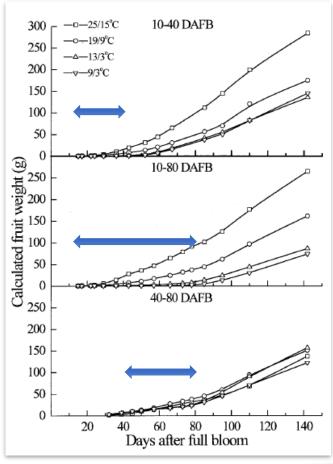
- > Condiciones que favorezcan actividad de abejas, que transportan el polen (alta radiación solar; alta temperatura).
- Condiciones que mantengan la receptividad del estigma (alta HR; T moderada).

GERMINACIÓN

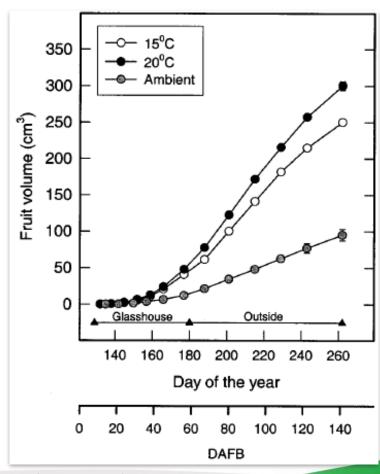
> Tasa de germinación del polen aumenta con la temperatura ambiente. Boro favorece cuaja.

CRECIMIENTO TUBO POLÍNICO

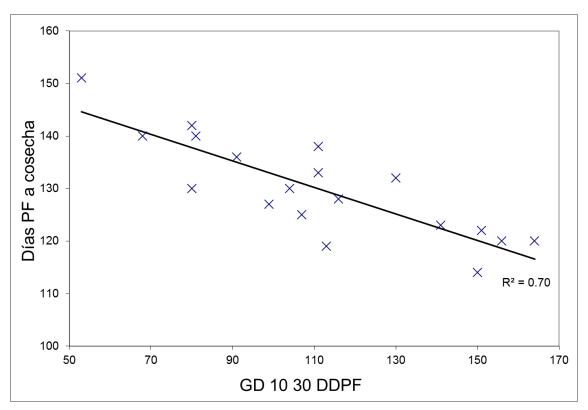
- > Avance de saco polínico es mayor con alta temperatura.
- > Viabilidad o longevidad del óvulo. Nitrógeno.



En floración se construyó un indicador de actividad de abejas en base a temperatura del aire, radiación solar y viento.


Primera etapa crecimiento es afectada por condiciones meteorológicas

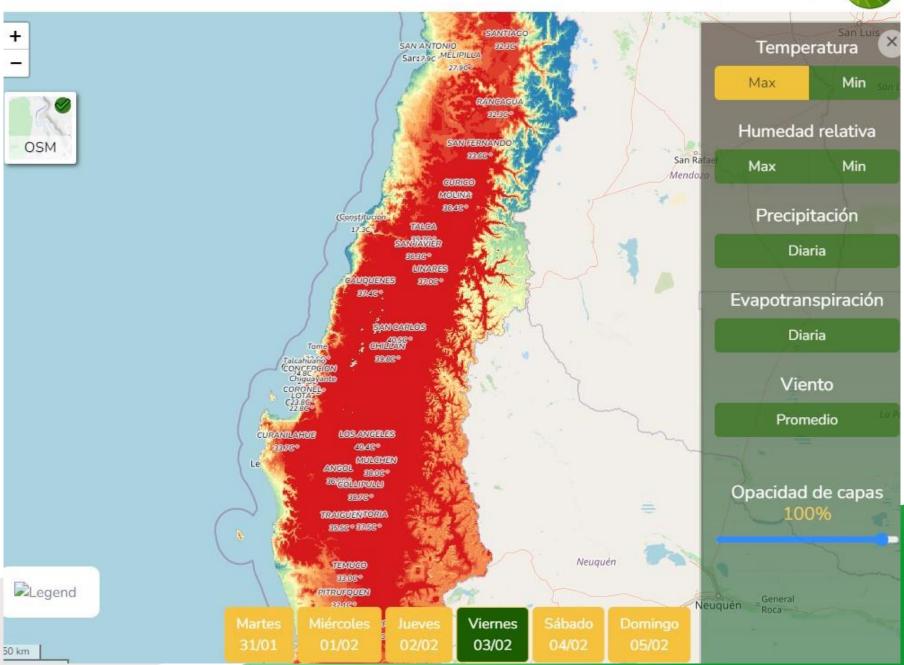
- > En División Celular se define número de células del fruto y formación de sus componentes.
- > Baja temperatura limita tamaño potencial; favorece maduración paulatina y vida de postcosecha.
- > Alta temperatura reduce período de crecimiento y acelera maduración; favorece calibre potencial.



Warrington et al., 1999.

Atkinson et al., 2001.

EFECTO EN EXTENSIÓN PERÍODO CRECIMIENTO

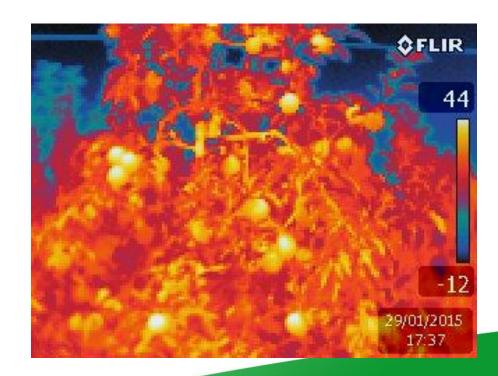


Alta temperatura en división celular se asocia a adelanto de cosecha y rápida caída de índices de madurez (se acorta ventana de cosecha).


En manzanas Galas se construyó un indicador de estimación de fecha y ventana de cosecha en base a temperatura del aire en división celular.

Pronóstico y monitoreo de riesgos climáticos en nuestra agricultura

ESTRÉS EN PRECOSECHA


ESTRÉS EN PRECOSECHA

EFECTO DE ALTA TEMPERATURA Y BAJA HR

- > Cierre estomático, con la consiguiente disminución en la producción de asimilados
- > Mayor daño por sol
- > Reducción del calibre
- > Menor color
- > Adelanto fecha de cosecha
- > Reducción de la vida de postcosecha
- > Mayor incidencia de desórdenes fisiológicos asociados a deficiencia de Calcio
- > Fruta más blanda
- > Menor acumulación de reservas en la planta
- > Disminución de la productividad potencial en la temporada siguiente

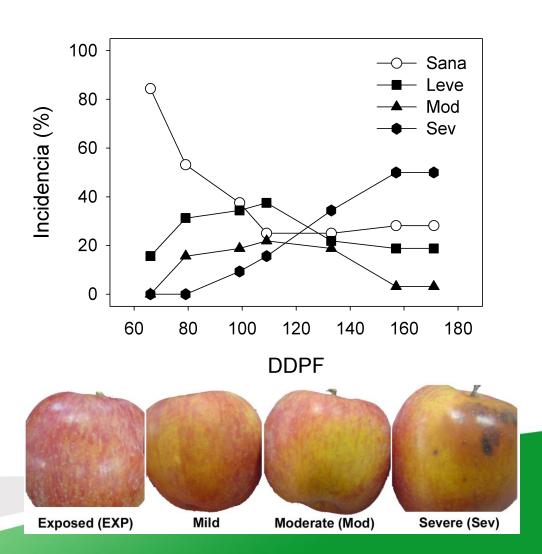
ESTRÉS AMBIENTAL CAMBIOS EN EL METABOLISMO

- > Acumulación de pigmentos y otros compuestos fenólicos como filtro de radiación solar nociva.
- > Síntesis de proteínas de shock térmico.
- Sistema antioxidante (ascorbato-glutatión) para neutralizar radicales libres.
- > Daño por sol ocurre cuando el sistema defensivo no es suficiente.
- Cambio coloración de la piel por exposición a alta radiación solar y temperatura.

DAÑO POR SOL

- > Degradación de clorofila.
- > Aumento de carotenoides.
- > Cae eficiencia fotosintética cuando la temperatura de la superficie del fruto (TSF) sobrepasa los 42 °C por más de 2 horas.
- > Para nuestras condiciones es equivalente a 5 horas continuas con T° aire sobre 29 °C.
- >TSF expuesto al sol es 12-15 °C mayor que la T° del aire.

DAÑO POR SOL


- >Más daño al reducir tamaño de árboles.
- >Cultivares tardíos.
- >Lado poniente del árbol.
- >Más daño en árboles débiles, con alta carga.
- >Puede afectar al 40% de fruta en huerto dependiendo de sensibilidad varietal.

DAÑO POR SOL

>Incidencia: cantidad de frutos con síntoma de daño. Asociada a número de frutos expuestos.

>Severidad: intensidad del daño. Asociada a exposición reiterada.

DAÑO POR SOL AMBIENTACIÓN

- >En el corto plazo se activa sistema antioxidante.
- >En el largo plazo se induce síntesis y acumulación de compuestos fenólicos (quercetinas en manzanos).
- >Exposición temprana a estrés fototérmico induce ambientación del fruto (acumulación de antioxidantes, fenoles).

FRUTOS DOBLES EN CEREZOS

- > Alta temperatura en postcosecha cuando ocurre la diferenciación floral.
- > Mes a partir de los 100 días después de plena flor.
- > Mayor riesgo con promedio de las T máximas diarias >32 °C.

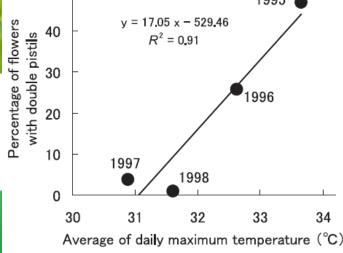
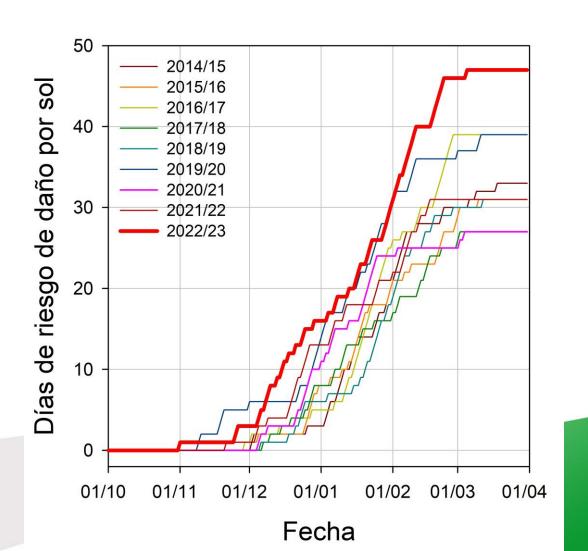


Fig. 3. Relationship between temperature from July 15 to August 14 and the frequency of double pistils in buds of 'Satohnishiki' sweet cherry trees grown in the reseach field of Kagawa University (Beppu, 2000).


ESTRÉS Y DESÓRDENES POSTCOSECHA

- >Deficiencia de calcio
- >Desbalances nutricionales
- >Problemas multifactoriales
- >Clima como factor indirecto

DÍAS DE RIESGO DE DAÑO POR SOL

DÍAS CON MÁS DE 5 HORAS SOBRE 29 °C. SAN CLEMENTE

INDICADOR DE ESTRÉS

DÉFICIT DE PRESIÓN DE VAPOR

- > Diferencia entre presión a saturación y presión parcial del vapor de agua en el aire.
- > Movimiento de agua desde una superficie a la atmósfera es proporcional al DPV.
- > Presión de vapor varia con humedad relativa y temperatura.

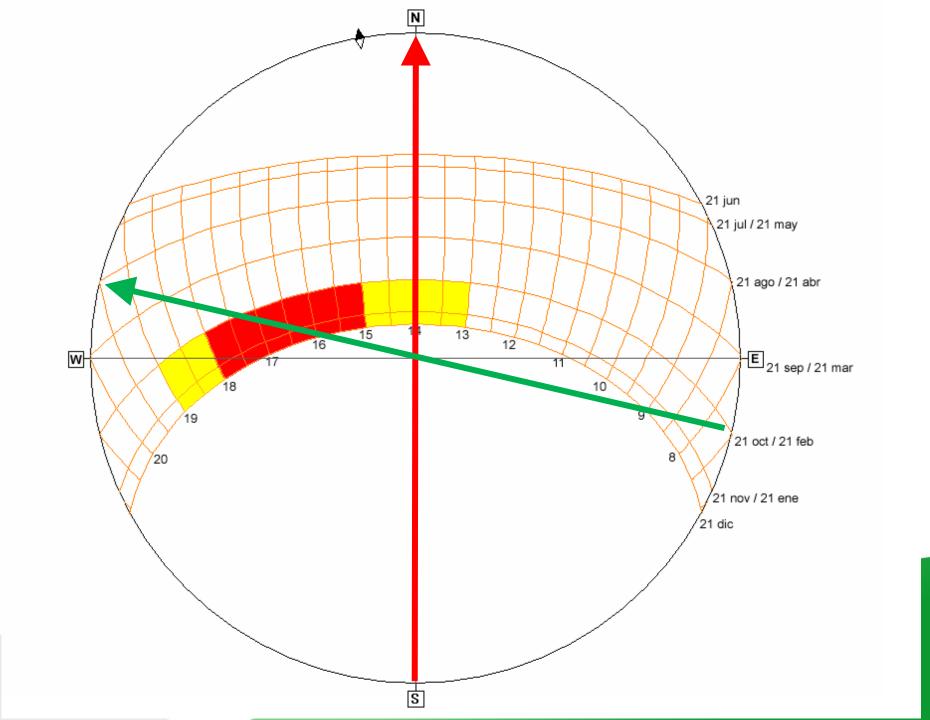
ÍNDICE DE ESTRÉS

> Relaciona temperatura ambiente y humedad relativa.

$$\begin{split} DPV(kPa) &= e_{s} - e_{w} = e_{s} \left(1 - \frac{HR}{100}\right) \\ e_{s} &= EXP\left(\frac{16.78 \times Taire - 116.9}{Taire + 237.3}\right) \\ e_{s} &= presión \ de \ vapor \ a \ saturación \ (kPa) \\ e_{w} &= presión \ de \ vapor \ parcial \ (kPa) \\ Taire(°C) \ HR(%) \end{split}$$

Unidades de estrés =
$$(Taire - 10)(-0.2 \times HR + 15)$$

 $Taire(^{\circ}C) \ge 10^{\circ}C \ y \ HR(\%) \le 75\%$


CONTROL DAÑO POR SOL

MEDIDAS CULTURALES
ENFRIAMIENTO EVAPORATIVO
BLOQUEADORES SOLARES
MALLA SOMBRA

MEDIDAS CULTURALES

Consideraciones que minimizan la aparición del daño por sol:

- Cultivares menos sensibles. Alta coloración y corto período de crecimiento
- Orientación de hilera. Evitar exposición cara poniente en horas de mayor temperatura ambiental
- Copa fija. Reducir exposición repentina al sol por movimiento de ramas al crecer los frutos
- Carga/Vigor. Evitar carga excesiva y débil desarrollo foliar
- Estado hídrico. Se ha reportado más daño con déficit hídrico
- Estado nutricional y sanitario (enfermedades, plagas, malezas)

EVAPORATIVE COOLING

- Aspersión de agua sobre la copa es sistema más efectivo
- El contacto con agua reduce temperatura del fruto
- Intervalos on-off (ejemplo 5'×15') durante el período con temperatura del aire sobre 30 °C
- Puede dejar depósitos en fruto por mala calidad del agua
- Favorece desarrollo color rojo

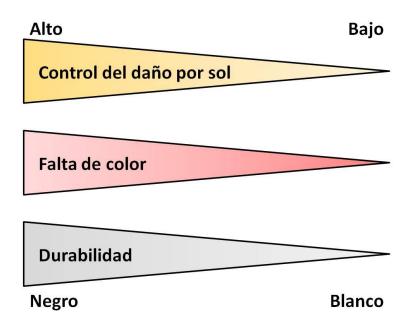
EVAPORATIVE COOLING

BLOQUEADOR SOLAR CAOLINA

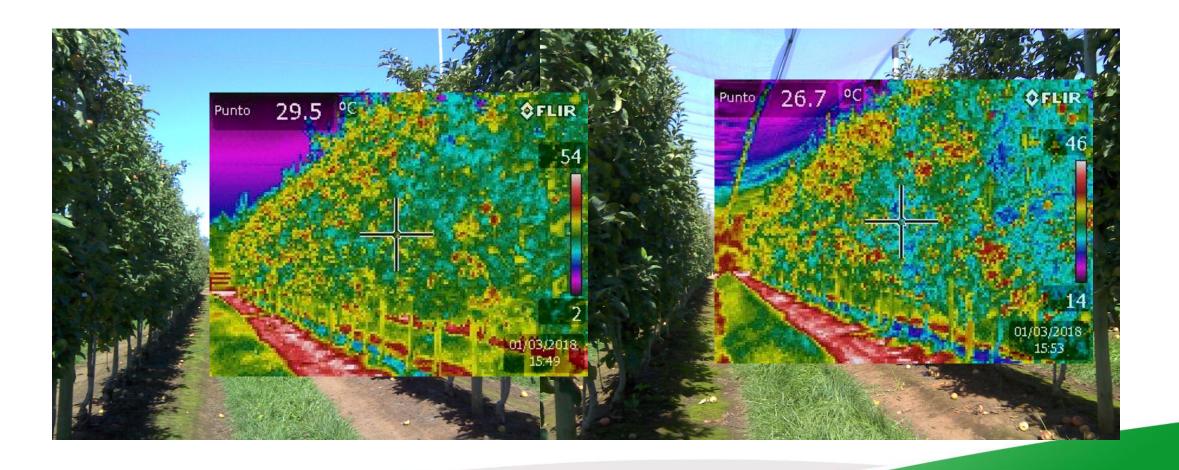
- >Película de partículas
- >Reflejan radiación solar
- >Aumenta radiación solar difusa
- >Reduce en 3 5 °C la temperatura de las hojas
- >No afecta el intercambio gaseoso
- >Mantiene alta fotosíntesis
- Difícil remoción en packing, sobre todo desde cavidades del fruto

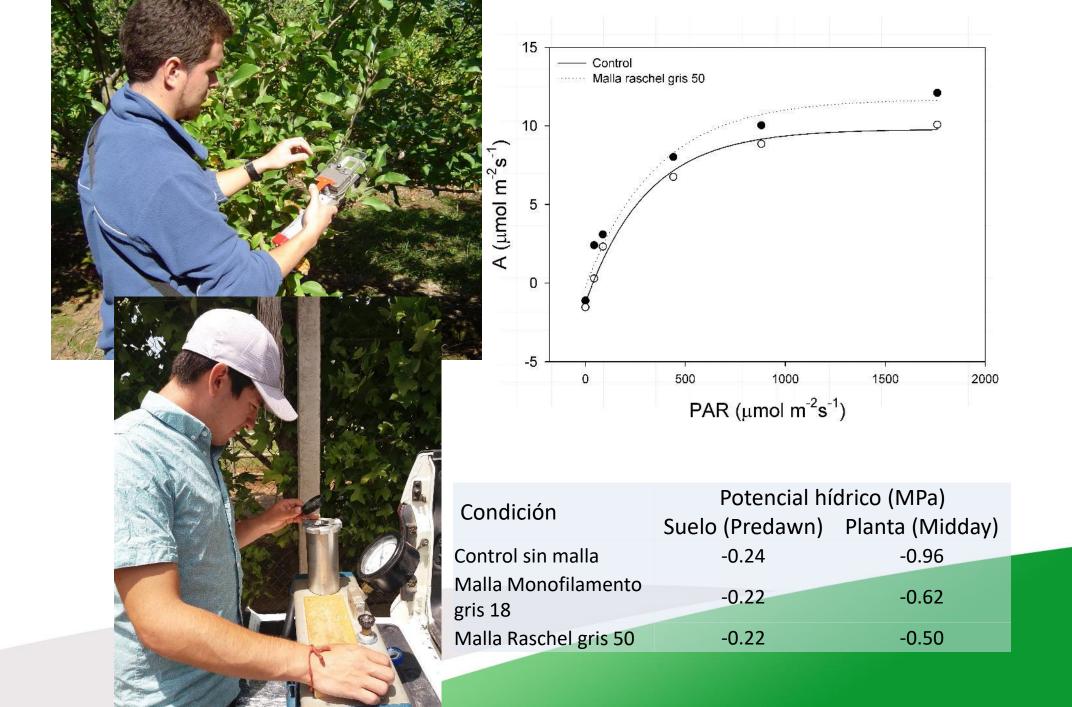
BLOQUEADOR SOLAR CAOLINA

- >Lograr y mantener cobertura
- >Fácil de remover con lluvia o viento
- >Aplicación desde arriba, con barra
- >Aplicación en lado más expuesto


BLOQUEADOR SOLAR CAOLINA

- >Habitual en Chile el uso en postcosecha de cerezos para prevenir frutos con doble pistilo en la próxima temporada
- >Combinado con bioestimulantes
- >Extractos de algas (*Ascophyllum nodosum*)



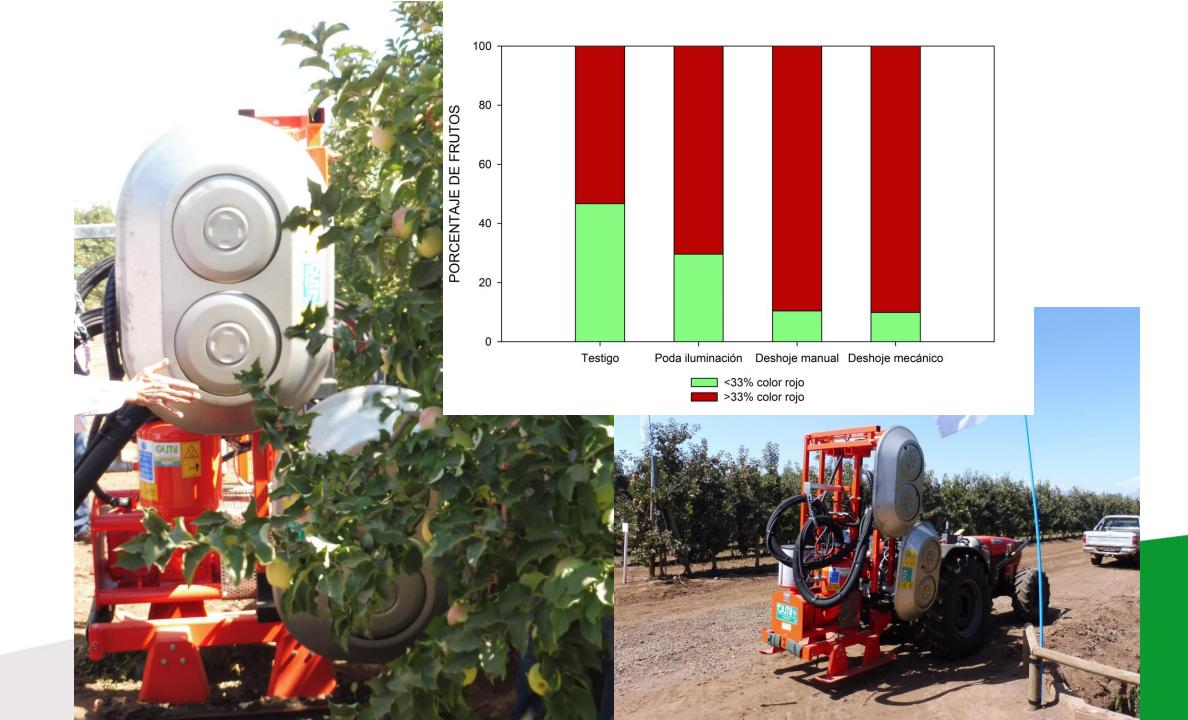

MALLA SOMBRA

Adaptado de Blanke, 2007.

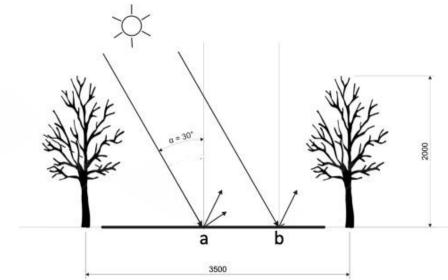
- Uso de malla sombra es el sistema de control de daño por sol más difundido en Chile.
- Reduce energía radiativa incidente.
- Filtro de radiación depende de trama, color, estructura.
- Blanca, más radiación indirecta (difusa), menos perjudicial para fotosíntesis y coloración roja.
- Principal inconveniente es disminución de luz para color e inducción floral.
- Uso de reflectante en suelo para contrarrestar efecto sombra sobre el desarrollo de color.
- Menor demanda hídrica, mayor fotosíntesis.

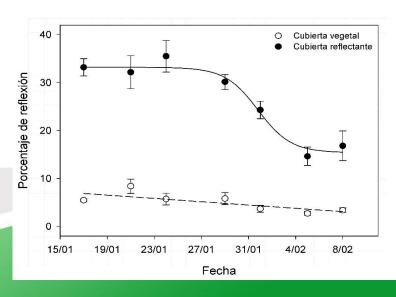
COLOR CUBRIMIENTO

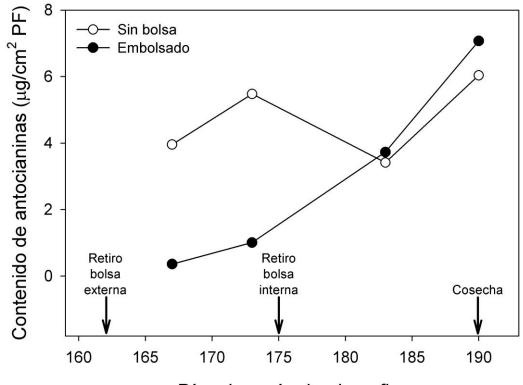
DESARROLLO DE COLOR REQUIERE:


- > Exposición directa a radiación solar (UV-B)
- > Baja temperatura previo a cosecha estimula síntesis de antocianinas

(Granny Smith con rubor no deseado en zonas frías)







Días después de plena flor

REFLECTANTES

Cubiertas de suelo reflectantes redirigen la radiación solar incidente para iluminar parte baja del árbol. Colocan 2 a 3 semanas antes de la cosecha.

TEJIDO

Refleja en diversos ángulos, aumenta el componente difuso.

Material resistente y durable (5 años).

Permite paso de maquinaria.

Se ubica cubriendo gran parte de entre hilera.

Extenday[®]. 7.000 – 9.000 US\$/ha

LÁMINA

Genera un ángulo único, directo.

Material frágil, un solo uso.

Se sitúa junto al eje.

ReflexSol®. 300 – 500 US\$/ha

Review

Advances in the Sustainable Use of Plastics in Horticulture—Perspectives, Innovations, Opportunities, and Limitations

Michael M. Blanke

INRES—Horticultural Science, University of Bonn, D-53121 Bonn, Germany; mmblanke@uni-bonn.de

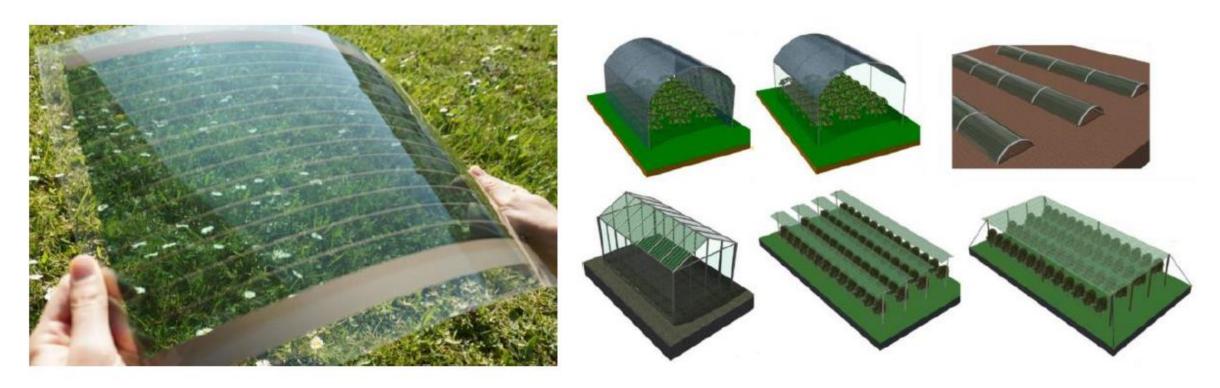


Figure 12. Flexible transparent organic agri pv (photos © B. Zimmermann, Fraunhofer Institue).

ENSAYO MALLA SOMBRA

- Temporada 2017/18
- Fuji Raku Raku/M.9
- Malla monofilamento 20%
- Plantación 2009: 3,5 × 1,3 m

ENSAYO MALLA SOMBRA

	Kg/ha Fruta sana	Cajas embaladas
Control	67.280	3.697
Malla Blanca	71.760	3.943
Malla Negra	73.360	4.031

Tratamientos	Categorías de daño por sol (%)			
	Sin daño	Leve	Moderado	Severo
Control	84,1 b	5,9	3,3	9,4 a
Malla Blanca	89,7 a	6,5	3,1	0,6 b
Malla Negra	91,7 a	6,1	1,3	0,9 b
Valor P	0,0009	0,9430	0,4148	0,0000

Tratamientos	Categoría de color de cubrimiento (%) ^(z)			
	Descarte	Fancy	Extra Fancy	Premium
Control	2,7 b	4,3 c	69,9 a	23,1
Malla Blanca	9,8 a	13,7 b	54,3 b	22,2
Malla Negra	11,8 a	20,0 a	48,5 b	19,7
Valor P	0,0013	0,0003	0,0035	0,7710

(z) Descarte: <30% de color rojo; Fancy: 30-50%; Extra Fancy: 50-70%; Premium: >70

Sepúlveda et al., 2022. Revista Mundoagro N°111.

FIGURA 2.

Efecto del uso de Malla sombra y Bloqueador solar sobre el porcentaje de manzanas Ambrosia según categoría de daño por sol.

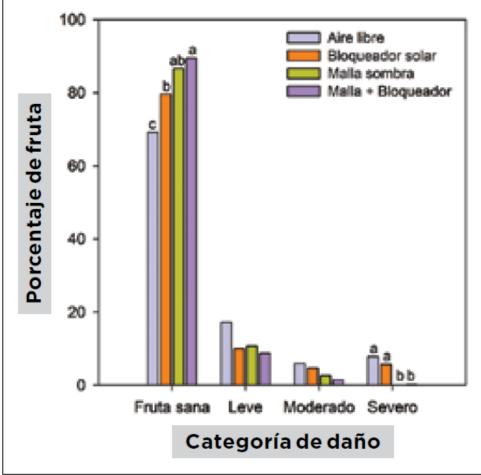
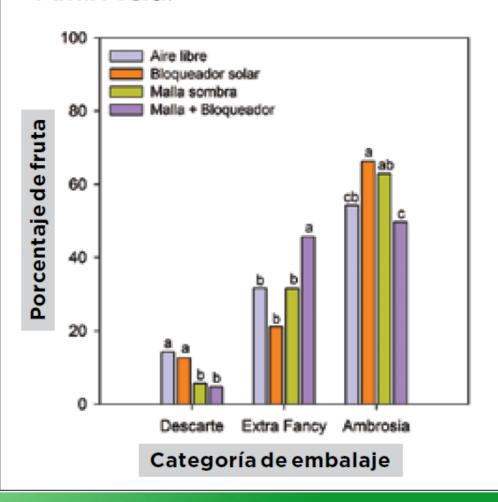
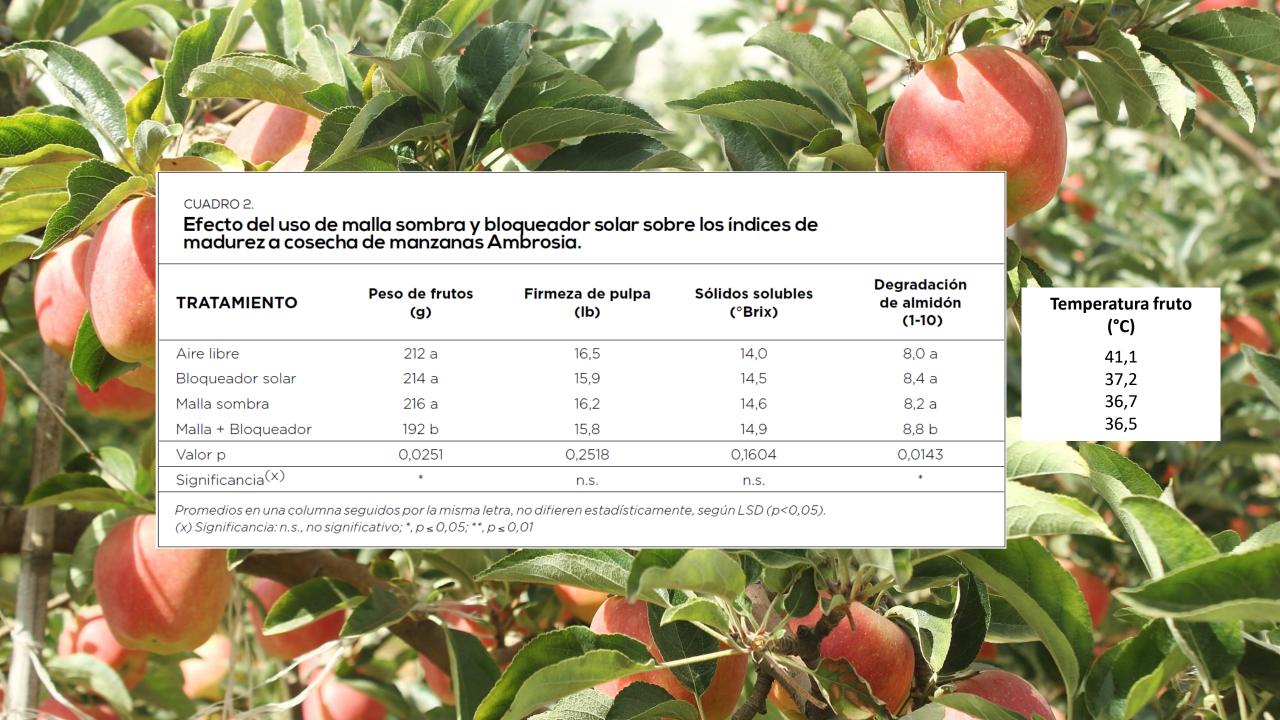
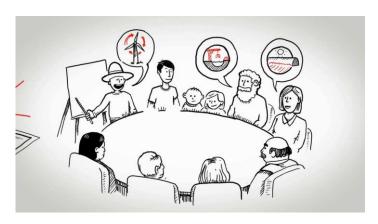




FIGURA 3.

Efecto del uso de Malla sombra y Bloqueador solar sobre el porcentaje de fruta por categoría de embalaje de manzanas Ambrosia.



MITIGACIÓN Y ADAPTACIÓN AL IMPACTO CLIMÁTICO ROL DE FRUTICULTURA

- > Fotosíntesis fija CO₂.
- Aumento de eficiencia del huerto contribuye a la mitigación del cambio climático.
- > Relación con comunidades rurales.
 - > Mecanización entendida para hacer labores manuales menos duras y más eficientes
- > Cambio a fuentes de energía renovables.
 - > Más autonomía para operaciones claves como el control de heladas

HOME | CONTACTO

DESTACAMOS

Comunicado Centro de Pomáceas

El Centro de Pomáceas se encuentra atento a cualquier requerimiento que pudiese existir. Sus cuatro laboratorios: Ecofisiología frutal, fisiología frutal, postcosecha y Unidad del Cerezo se encuentran completamente activos a la espera de sus requerimientos. Actualmente nos encontramos trabajando con proyectos públicos y

BOLETÍN TÉCNICO

INGRESA TUS DATOS PARA RECIBIR NOVEDADES

INFORMES CLIMÁTICOS

Dormancia y acumulación de frío 2022

Temporada 2021/2022 Nr. 59. Junio 2022 Laboratorio de Ecofisiología Frutal

LEER

OTROS DOCUMENTOS

ANUARIO VIVEROS

PROCEDIMIENTO TOMA DE MUESTRAS

